Tim:
Sorry about the last message, please ignore.
The problem is solved (I was simply not being careful) and made some
false claims on the results.
(16) -> )clear all
All user variables and function definitions have been cleared.
(1) -> a:=FiniteField(5,2)
(1) FiniteField(5,2)
Type: Domain
(2) -> b:=devaluate(a)$Lisp
(2) (FiniteField 5 2)
Type: SExpression
(3) -> c:=destruct(b)
(3) [FiniteField,5,2]
Type: List
SExpression
(4) -> c.1
(4) FiniteField
Type: SExpression
(5) -> d:="Fraction"::SExpression
(5) Fraction
Type: SExpression
(6) -> e:Boolean
Type: Void
(7) -> e:=EQ(c.1,d)$Lisp
(7) ()
Type: SExpression
(7) -> e:=(c.1=Fraction) -- message above
Although Fraction is the name of a constructor, a full type must be
specified in the context you have used it. Issue )show Fraction
for more information.
(7) -> e:= (c.1=d$Lisp)
>> System error:
The variable |d| is unbound.
protected-symbol-warn called with (NIL)
(7) -> a1:=Fraction Integer
(7) Fraction Integer
Type: Domain
(8) -> b1:=devaluate(a1)$Lisp
(8) (Fraction (Integer))
Type: SExpression
(9) -> c1:=destruct(b1)
(9) [Fraction,(Integer)]
Type: List
SExpression
(10) -> e:=(c.1=c1.1)
(10) false
Type: Boolean
William
----
On Tue, 10 Nov 2009 11:38:25 -0500
"William Sit" <address@hidden> wrote:
Thanks, Tim. That is exactly what I am looking for. Now I would like
to compare c.1 with some known constructor, say Fraction. (In other
words, given a domain of category Field, I would like to know if it
comes from the constructor Fraction). I tried a few variations and
each time, Axiom says:
Although Fraction is the name of a constructor, a full type must be
specified in the context you have used it. Issue )show Fraction for
more information.
Things I tried:
a:=FiniteField(5,2)
b:=devaluate(a)$Lisp
c:=destruct(b)
c.1
d:="Fraction"::SExpression
e:Boolean
e:=EQ(c.1,d) -- message above
e:=(c.1=Fraction) -- message above
e:= (c.1=d$Lisp) -- message above
a1:=Fraction Integer
b1:=devaluate(a1)$Lisp
c1:=destruct(b1)
e:=(c.1=c1.1) -- message above
I confess that I'm still using a very old Window version (Version of
Tuesday November 30, 2004 at 21:11:14) but I don't think that makes
a difference in these examples.
William
On Mon, 09 Nov 2009 21:24:48 -0500
Tim Daly <address@hidden> wrote:
I'm not sure what you want. Perhaps you'd like to say:
a:=Fraction(Polynomial(Integer))
b:=devaluate(a)$Lisp
which returns the list (actually of type SExpression)
(Fraction (Polynomial (Integer)))
c:=destruct(b)
c.2
which returns (Polynomial (Integer))
Does that help?
Tim
William Sit wrote:
Tim:
Interesting. Is there a similar function that is more structural?
say, can I test whether some domain (which may be passed as a
parameter of type Field) is of the form Fraction(something) and if
so, extract "something" (that is, assign it to a variable and
further test it), sort of a deconstruction?
William
On Mon, 09 Nov 2009 19:51:45 -0500
Tim Daly <address@hidden> wrote:
You can get a memory pointer to a lisp object.
a:=Fraction(Integer)
returns the "memory location of Fraction(Integer)"
You can prove this with
b:=Fraction(Integer)
EQ(a,b)$Lisp
The lisp function EQ compares memory pointers.
There is a lisp function to get the hash value of any object
call sxhash. You can call it.
SXHASH(a)$Lisp
Note that if
c:=Integer
then
EQ(a,c)$Lisp is false
SXHASH(a)$Lisp is not equal to SXHASH(c)$Lisp
Thus the hash function you seek already exists.
You just have to accept the fact that Spad is only syntactic
sugar for lisp code and lisp is not evil.
Tim
_______________________________________________
Axiom-developer mailing list
address@hidden
http://lists.nongnu.org/mailman/listinfo/axiom-developer
William Sit, Professor Emeritus
Mathematics, City College of New York Office:
R6/202C Tel: 212-650-5179
Home Page: http://scisun.sci.ccny.cuny.edu/~wyscc/
William Sit, Professor Emeritus
Mathematics, City College of New York Office: R6/202C
Tel: 212-650-5179
Home Page: http://scisun.sci.ccny.cuny.edu/~wyscc/
William Sit, Professor Emeritus
Mathematics, City College of New York Office: R6/202C
Tel: 212-650-5179
Home Page: http://scisun.sci.ccny.cuny.edu/~wyscc/